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Abstract-Oscillatory behaviour in thermocapillary convection with buoyancy forces has been studied 
numerically for superposed immiscible liquid layers with a free surface, in which the lower layer consists 
of low-Prandtl-number fluid. Numerical solutions to the complete two dimensional Navier-Stokes and 
energy equations have been obtained using the spline integration method. Attention has been focused on 
flow instabilities of an oscillatory nature which appear to be induced by the buoyancy forces. An attempt 
to underst.and the origin of these instabilities and indications on how to reduce or even avoid them is made. 
The numerical results demonstrate that oscillatory flow in a single layer of low-Prandtl number fluid may 
transform to a steady state after encapsulation with a fluid of higher Prandtl number, even in the absence 
of Marangoni forces, except when the buoyancy and the viscous forces in the upper layer are very small 
when compared with the lower one. The numerical experiments also demonstrate that the addition of the 
combined Marangoni forces to the gravitational convection plays an important role in suppressing oscil- 

latory flow. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Combined buoyancy and thermocapillary convection 
in differential cavities for a single fluid layer with a free 
surface has been extensively investigated analytically, 
numerically and aexperimentally [l-9] and still remains 
a current topic of research interest especially in super- 
posed immiscible liquid layers due to its importance 
in many natural and industrial processes. Some indus- 
trial applications that involve thermocapillary forces 
are surface melting and alloying techniques using high 
power lasers and processing of ceramics and sem- 
iconductors that frequently involve a molten and a 
gaseous phase. One such important application that 
has been commercially introduced, is the elimination 
of evaporation of volatile components and a reduction 
in thermal convection of a liquid melt by encap- 
sulation with a protective molten material. This has 
resulted in a significant improvement in the quality of 
the final product used for the manufacture of sem- 
iconductors. 

Instabilities that result in oscillatory flow, due to 
the buoyancy and thermocapillary forces will generally 
cause a temperature oscillation in the field. Such an 
oscillation is highly undesirable for many technical 
processes, e.g. for crystal growth since they are known 
to contribute to the inhomogeneity of the resulting 
crystal. Ben Hadid and Roux [6] indicated that the 
basic mechanisms giving rise to these instabilities are 
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still not well understood. Several experimental inves- 
tigations cited by these authors have shown that tem- 
perature fluctuations, caused by an unsteady buoy- 
ancy-driven convective flow, occur when the thermal 
gradient exceeds a certain critical value. 

Chun et al. [l] indicated that the origin of the insta- 
bility in Marangoni convection in a float zone is 
caused by the growth of some temperature dis- 
turbances that originate at the free surface. A tem- 
perature perturbation here leads to a corresponding 
disturbance in the surface tension gradient, resulting 
in perturbation of the velocity field. Using a linear 
stability analysis for thermocapillary liquid layers sub- 
jected to a horizontal temperature gradient, Smith and 
Davis [2] found that the mechanism of instability is 
associated with a balance between heat conduction 
and heat convection in the layer. The velocity field is 
important only in so much as it transports heat in the 
system. Any mechanical aspects of the velocity field, 
such as viscous dissipation, are not important in terms 
of the fundamental mechanism of the instabilities. 
Parmentier et al. [9] classified three types of instability 
according to their behaviour which depended on the 
values taken by the Prandtl numbers. 

For two immiscible liquids superposed in a rect- 
angular cavity with differentially heated end walls, 
convection is initiated due to the horizontal tem- 
perature gradient which gives rise to density differ- 
ences. However, the effect of surface tension forces at 
the interface and at the free surface also plays an 
important role in the convective behaviour, since it 
influences the mechanical coupling between the two 
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NOMENCLATURE 

aspect ratio of cavity, L//H’ 
gravitational acceleration 
height of fluid layer 
fluid thermal conductivity 
length of cavity 
Marangoni number, equation (9) 
Nusselt number 
Prandtl number, (V/LX)! 
Rayleigh number, 
gfliR3 (T;, - T;)/v;cc; 
Reynolds number, y,(Tk - TA)L’/p,vi 
time 
dimensionless time, t’ct,/H’* 
temperature 
temperature of vertical hot wall 
temperature of vertical cold wall 
dimensionless temperature 

x, y dimensionless Cartesian coordinates 
K a dimensionless velocity components : 

U‘ = u:H’/u, ) vi = v’R/cc, 
a’, v’ dimensional velocity components. 

Greek symbols 
% thermal diffusivity 
BL coefficient of thermal expansion 
Y1 - aa,/aT 

/4 dynamic viscosity 
Vi kinematic viscosity 

surface tension 
G dimensionless stream function 
n dimensionless vorticity. 

Superscript 
relative quantities (layer 2 to layer 1). 

layers. This has been explained in some detail by Wang 
and Kahawita [lo, 111. 

To provide an evaluation of the fundamental mech- 
anism of natural (that is, gravity driven) and ther- 
mocapillary (Marangoni) convection, experimental 
and theoretical investigations in idealized geometries 
(rectangular cavities) has been reported [ 12-171 with 
differentially heated side walls. 

In addition, Benard-Rayleigh convection where 
heating is from below has been studied quite exten- 
sively [ 18-221. For example, Renardy and Joseph [ 181, 
Renardy and Renardy [ 191 and Renardy [20] have 
conducted fairly extensive analytical studies on the 
stability of the two-layer BCnard system using per- 
turbation theory. Their findings indicate that the onset 
of instability could be oscillatory. A theoretical and 
experimental study of two-layer convection in fluids 
heated from below has been reported by Rasenat et 
al. [21]. Their linearized perturbation analysis of the 
system has revealed that two types of oscillatory insta- 
bilities are possible ; the first is due to a non-vanishing 
distortion at the interface, while the second is the 
result of a cyclic variation between viscous and ther- 
mal coupling. More recently, Colinet and Legros [22] 
using a weakly non-linear analysis have examined the 
oscillating convective structures that appear in the 
critical point of the Rayleigh-BCnard problem. Their 
analysis was complemented by numerical experiments 
which confirmed the appearance of a Hopf bifur- 
cation. 

Most studies relating to sidewall heating have been 
confined to the steady state. Ben Hadid and Roux 
reported [4-6] some results from their numerical simu- 
lation of oscillatory convection in low Prandtl number 
liquids in a shallow open cavity. Villers and Platten 
[8] presented their experimental and numerical studies 
of coupled buoyancy and Marangoni convection in 

acetone. Their experiments and numerical simulations 
both show the existence of three different states : mon- 
ocellular steady states, multicellular steady states and 
a spatio-temporal structure. Mundrane and Zebib [23] 
recently provided a stability boundary in their defined 
Re-Gr plane for a single low-Pr number fluid layer. 
An energy analysis for the fluctuating part of the 
numerical 2-D-solution in order to discuss the insta- 
bility mechanism was also presented. Doi and Koster 
[16] studied pure thermocapillary convection in two 
immiscible liquid layers with an upper free surface. 
Conditions for which motion in the lower encap- 
sulated liquid layer would be suppressed were 
presented. Very recently, the present authors [ 11, 121 
numerically simulated the steady and transient lami- 
nar combined buoyancy and thermocapillary con- 
vection in superposed immiscible liquid layers using 
the spline fractional step procedure (SMFS) [25]. In 
that study, the interface boundary conditions (main- 
taining the continuity of temperature, velocity, shear 
stress and heat flux at the interface) needed to be 
simultaneously satisfied. For medium Prandtl num- 
bers and higher Rayleigh numbers, for example 
Ra> lo7 or higher Marangoni numbers 
Ma 2 2 x 104, solutions with an initially quasi-per- 
iodic behaviour which persist for a long time were 
discovered. 

The present investigation is devoted to a numerical 
simulation of oscillatory flows induced in two-layer 
systems of immiscible liquids with a free surface. The 
bottom layer is assumed to have the lower Prandtl 
number and particular attention is paid to the sta- 
bilizing effect of the upper encapsulate since this has 
an important bearing on the final crystalline structure 
of the lower layer. The development of the tem- 
perature and local flowfield has been documented. 
The simulation of the transient phase in a two fluid 



system reveals how the buoyancy and capillary forces 
(when in opposition) compete against each other, the 
final steady state depending on the dominancy of one 
over the other. The initiation and development of 
oscillatory flow and fundamental indications on how 
to reduce or even avoid these oscillations have been 
provided. 

GOVERNING EQUATIONS 

Thermocapillary convection which is induced by a 
combination of dfensity differences in a gravitational 
field and by surface tension gradients, is governed by 
the two-dimensional Navier-Stokes equation and the 
energy equation for both fluids [i = 1 (below) and 2 
(above)]. The non-dimensional equations in stream- 
function and vorticity form (using the Boussinesq 
approximation for the body forces) may be written : 

VfY, = -R, (1) 

and 

V:T, (3) Ma, = _ &i (Tb - TW’ 
aT wi 

Gi being the surface tension. 

Vf =$+$ (4) 
The analysis above indicates that for immiscible 

two-fluid flow problems, the non-dimensional par- 
ameters of interest are Ra,, Ra2, Pr,, Pr,, d, p, k, Ma, 
and Ma2. 

(9 

and 

ay’, ay’, 
ui=w vi= -ax 

where d = U&-X, and R = k2/kl. 
NUMERICAL PROCEDURE 

Boundary conditions 
For purposes of comparison between the results 

obtained in a single fluid layer and in a two fluid 
system, the present study considers two equal fluid 
layers each of height H’. The boundary conditions for 
the problem are : 

forx=O 

ui=vi=Y,=O, Q= -5, and Ti= -B/2 

for x = B 

Since in two layer thermocapillary convection, each 
liquid layer inlluences the other through the interface 
conditions, the treatment of these conditions in the 
computational procedure is of extreme importance. 
In this respect, the spline fractional step procedure 
(SMFS) [25] is an improvement over existing 
methods. The essential advantage of the technique for 
the present problem lies in the fact that boundary 
conditions containing derivatives may be easily incor- 
porated into the solution procedure since values of 
first or second derivatives may be evaluated directly 
and maintain the same degree of accuracy when the 
algorithm that represents the spline approximation to 
the governing equations (l)-(4) is constructed. The 
governing matrix system obtained is always tri- 
diagonal containing either function values or the first 
derivatives at the grid points. The SMFS schemes and 

’ the boundary conditions in discretized form may be 
obtained in direct fashion from the procedure detailed 
in earlier articles [lo, 11,2&28] and will therefore not 
be described further. 

(6) The time dependent non-linear coupled partial 

&CV,Z yi=(), Q-$, and T, = B/2 

fory=O 

azv u,=v,=Y,=O, c-&=--J 
ay2 ’ 

and 2 = 0 
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andfory=2 

aT2 aT2 vz=yz=o, f12=diMa2--, and -=oo. ax ay 
(6’) 

Neglecting any deflection of the interface between the 
two liquids, the boundary conditions maintaining the 
continuity of temperature and velocity at the interface 
(y = 1) are: 

TI = T2r 

Y, = YZ and U, = u2 

azy', a2y2 
-= p ay2 

aY* 

-- -Ma, g (7) 

or 

R, =pC12+h4a,~ 

where ,Q = p2/pi, Ma, is the interface Marangoni num- 
ber and Ma2 is the Marangoni number for the upper 
layer and 
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differential equations were solved by considering a 
31x31, 41x41 or 81x41 grid depending on the 
different values of aspect ratio B. In order to accu- 
rately describe gradients that are expected to be steep 
in the boundary layer regions, a non-uniform grid in 
both the x- and y-directions was used. Accuracy of 
the solutions were verified by grid refinement. All com- 
putations were performed on a 486 based IBM com- 
patible PC. 

RESULTS AND DISCUSSION 

Villers and Platten [ 151 introduced the ratio of cer- 
tain physical quantities evaluated in the two layers : 

and 

Q, = b/ff’l~/WH’l~. (11) 
For the present case, if use is made of the above 
dimensionless parameters, equations (10) and (11) 
become : 

Q. = GRaJRa, 

and 

Q, = iii 
Qa is related to the relative importance between the 
buoyancy forces in the upper and lower layers, and 
Q, is related to the viscous forces. 

The present authors [l l] introduced a new par- 
ameter 

Ma* = Ma, -0.5@Ma2 (12) 

which represents the combined effects of Marangoni 
forces acting at the interface between the two liquids 
and at the free surface. It was shown further that the 
new parameter is a unique thermocapillary quantity 
which influences the convection in the lower layer. 

The interest in studying two fluid layers is due to the 
practical applications mentioned earlier, for example 
that of a liquid melt encapsulated by a protective 
molten material. This has generally resulted in a sig- 
nificant improvement in the quality of the final prod- 
uct. In the present study, we specifically consider the 
suppression of the undesired oscillations in the encap- 
sulated low-& number fluid layer. This is dependent 
on the influence exerted by the buoyant convection in 
the upper layer over the encapsulated lower fluid layer 
(through coupling at the interface) and the combined 
effects of Marangoni forces (Ma*) acting at the inter- 
face between the two liquids and at the free surface. 

Many combinations of liquids are possible to pro- 
vide an immiscible liquid system. Combined buoyancy 
and thermocapillary convection in superposed immis- 
cible liquid layers using some selected fluids have been 
investigated experimentally [7, 16, 17,241. In the pre- 
sent study, with no loss of generality, we used 

Pr = 0.015 for the encapsulated liquid of low Prandtl 
number, and Pr = 1 for the liquid encapsulant. 

The present combination of two superposed immis- 
cible fluid layers, may result in oscillatory regimes as 
detailed below. Figure 1 (a) presents the time-variation 
of the maximum stream function in both layers for 
Ra, = 600, Ma, = Ma2 = 0, Qc = 0.01, Q, = 0.1, 
Pr, = 0.015, Pr, = 1 and B = 4 in a rectangular cavity 
with differentially heated end walls (Tc = -B/2 and 
T,, = B/2). The non-linear character of the oscillation 
is clear. 

Figure 1 (b) provides the time variation of the total - 
mean Nusselt number NU at the two endwalls and at 
the midplane, respectively. It is noted that the vari- - 
ation of the total mean Nusselt number Nu is stronger 
near the cold wall than at the midplane, while near the 
hot wall this variation is comparatively weak. Figure 2 
illustrates the variation of the isotherms and stream- 
lines in the lower layer at six instants [the small circles 
shown in Fig. 1 (a)] over a period of oscillation. 

It is not surprising that the variation of the flow 
patterns in the lower layer are similar to those 
obtained in a single fluid layer by Ben Hadid and 
Roux [6]. This is a particular case where the buoyancy 
force and the viscous force in the upper layer are very 
small compared with the lower one. In other words, 
the influence of the upper layer on the lower one 
through the interface is very weak so that oscillations 
in the lower layer cannot be avoided. 

As was expected, increasing the value of Q, (relating 
viscous forces) or Q. (relating buoyancy forces), i.e. 
increasing the influence of the upper layer on the lower 
layer, may be beneficial in enhancing stability. In fact, 
for pure gravitational convection, the flow behaviour 
in the lower layer is influenced by the viscous effects 
and the heat transfer through the interface between 
the two layers. The higher the value of Qr, the stronger 
the stabilizing influence on the lower layer. As an 
example the following values : Ra, = 600, 
Pr, = 0.015, Pr, = 1, d = 1 with B = 4, while 
Q. = Q, = 1, i.e. with buoyancy and viscous forces of 
the same order in both layers, the steady state flow 
obtained will be as shown in Fig. 3(a)-(b). These fig- 
ures present the time history of the maximum stream 
function in both layers (Y,)max and (YJmaX and the - 
total mean Nusselt number NU respectively. (‘Pi),, 
in the upper layer quickly approaches its maxi- 
mum value at about a dimensionless time of t = 
g, (~*)nl,, in the lower layer approaches steady 
state, and the difference between the mean Nusselt 
number at the sidewalls and at the midplane, i.e. Nu, - 
and Nu,, is less than 1%. At the initial stage, the total 
mean Nusselt number at the sidewall immediately 
attains its maximum value, then rapidly diminishes 
and at a time of about t = 1.08, the total mean Nusselt 
number at the hot wall approaches a minimum and 
then again gradually increases towards its steady state. 
However, the total mean Nusselt number at the mid- 
plane departs from zero only at t = 0.12, then rapidly 
attains its maximum and finally tends towards its 
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Time 
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Time 

Fig. 1. Ra, = 600, Q. = 0.015, Q, = 0.1, Pr, = 0.015, Pr2 = 1, & = 1 and B = 4: (a) time variation of the 
maximum stream function ; (b) ume variation of Nusselt numbers at the two endwalls (A$, and NuJ and 

at the midplane (A&,) for two layers. 

steady state value with very small oscillations. This is 
similar to the features observed in cavities filled with 
a single fluid at medium Prandtl numbers. 

Figure 4(a) provides the time history of the 
maximum stream function for Ra, = 600, 
Pr, = 0.015, Pr2 = 1 and B = 4 with (a) Q. = 0.1, 
Q, = 10 and & = 0.1; and (b) Q. = 10, Q, = 0.1 and 
E = 1 respectively. Comparing these results with those 
for the case where Q. = 0.01 and Q, = 0.1 (shown in 

Fig. la), the stabilizing effects may be noted. The 
relatively higher viscous forces in the upper layer 
(Q, = 10) result in a steady state behaviour in the 
lower layer while the relatively higher buoyancy forces 
in the upper layer (Q. = lo), results in a weakening 
of the oscillation in the lower layer. 

Figure 4(b) indicates the time history of the hori- 
zontal velocity at the centre point of the interface 
for Ra, = 600, Pr, = 0.015, Pr, = 1 and B = 4 with 
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Fig. 2. Time variation of the isotherms and streamlines at six instants over a period of oscillation in 
Fig. l(a). 

Q, = 10 and Qa = 0.1, 1 and 10, respectively. With an 
increase in the value of Qcl, the velocity direction is 
changed ; for higher values of Q., the direction is domi- 
nated by the convection in the upper layer. The steady 
state isotherms and streamlines are presented in 
Fig. 5. 

As for the case of the single fluid layer, addition of 
Marangoni forces to the buoyant convection may also 
be beneficial to the stability. However, it is important 
to point out that in a two fluid layer system, the 
combined Marangoni number Ma* defined in equa- 
tion (12) plays a dominant role in the stabilizing 
effects. It is similar to the influence of Marangoni 
forces at the free surface for a single fluid layer. 

Figure 6(a)-(b) present the steady state isotherms 
and streamlines for Ra, = 600, and Ma* = 0, 
Q,=0.01,Q,=0.1,Pr,=0.015,Prz= lwithB=4, 
while Ma* = -34(Re = -2.4 x 103) and Ma* = 
30(Re = 2.0 x 103). 

It is also noted that the flow patterns in the lower 
layer with Ra = 600 and Re = -2.4x lo3 and 

Re = 2 x lo3 are similar to the results obtained in a 
single fluid layer by Ben Hadid and Roux [6]. 

For Ma* = - 34, the fluid at the interface tends to 
flow from the cold to the hot wall, i.e. in the lower 
layer opposite in direction to that generated by the 
buoyancy force. As a result, two counter-rotating vor- 
tices are generated by the thermocapillary flow close to 
the interface. While Ma = 30, the fluid at the interface 
also tends to flow from the hot to the cold wall rein- 
forcing the gravitational convection. The flow is thus 
further accelerated at the interface and additional 
energy is available to maintain the two principal cells 
in the lower layer. 

The addition of Marangoni forces at the free surface 
(represented by the Marangoni number Ma,) influ- 
ence the lower layer by coupling with the flow in the 
upper layer through viscous stress across the interface. 
This depends strongly on Qp. In the present study, 
using the above parameter with Ma2 = 400 or 
Ma2 = -400 while Ma* = 0, results in oscillatory 
flow being encountered. 
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Fig. 3. Ra, = 600, Q. = 0.015, Q? = 0.1, Pr, = 0.015, Pr, = 1, d = 1 and B = 4: (a) time variation of the 
maximum stream function ; (b) time variation of Nusselt numbers at the two endwalls (Nub and Nu,) and 

at the midplane (NuO) for two layers. 

Figure 7(a) presents the steady state flow patterns 
in the absence of buoyant forces, i.e. theoretically 
zero gravity for Ma* = 0 and Ma2 = 100. Ma* = 0 
corresponds to a special case, theoretically no fluid 
motion will arise in the lower layer for an infinite twin 
layer system, and so any heat transfer has to occur by 
pure conduction, the resultant temperature expression 
being T = Cx along the interface [l I]. However, due 
to sidewall effects, in a finite cavity, the difference 

between the numerical results and the analytical solu- 
tion may often be discerned visually, especially for 
low-Prandtl number fluids. 

Figure 7(b, c) show the steady state flow patterns 
for Ma* = 0 and Ma, = 100, Ma* = 0 and 
Ma, = - 100, with Ra, = 600, Q. = 1, Q, = 10, 
Pr, = 0.015, Pr, = 1, a = 0.1 and B = 4. In the two 
cases, the flow in the lower layer is dominated by the 
buoyant force and the viscous effects at the interface, 
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0.00 

(a) 

Q a = 0.01 
Q,=o.l 

0.0 2.50 5.00 7.50 

Time 
lo.w 12.50 15.00 

Fig. 4. Ra, = 600, Pr, = 0.015, Prz = 1, and B = 4: (a) time history of the maximum stream function for 
Q. = 0.1 and Q, = 10, Q. = 10 and Q, = 0.1, and Q. = 0.01 and Q, = 0.1; (b) time history of the horizontal 

velocity at the center point of the interface for Q, = 10 and Q. = 0.1, 1 and 10. 

the two principal cells in the lower layer being 
maintained. 

CONCLUSIONS 

Numerical simulation of oscillatory flows induced 
in a two-layer system of immiscible liquids with a free 
surface (the liquid in the lower layer being of lower 
Prandtl number), has been studied. The numerical 
results indicate that oscillatory flow in a single layer 

of low Prandtl number fluid may transform into a 
stationary steady-state behaviour after encapsulation 
with a fluid of higher Prandtl number even in the 
absence of Marangoni forces, except when the buoy- 
ancy and the viscous forces in the upper layer are 
very small compared with those of the lower one (a 
particular case being a gas). The numerical exper- 
iments also demonstrate that the addition of com- 
bined Marangoni forces to the gravitational con- 
vection may be beneficial in enhancing the stability. 
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(b) 

Fig. 5. Fteady state isotherms and streamlines [same parameters as Fig. 4(b)]. 

(4 

Fig. 6. Steady state isotherms and streamlines for Ra, = 600, and ,M+ = 0, Q. = 0.01, Q, = 0.1, 
Pr, = O.Dl5, Prz = 1 with B = 4: (a) Ma* = -34(Re = -2.4 x 10’) ; (b) Ma* = 3O(Re = 2.0 x 103). 
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(4 

Fig. 7. Steady state isotherms and streamlines : (a) Ra = Ma * = 0, Mu* = 100 and d = 0.1; (b) Ma2 = 100 
with Ma* = 0, Ra, = 600, Q. = 1, Q, = 10, Pr,, = 0.015, Prz = 1, CE = 0.1 and B = 4; (c) Ma2 = - 100 

with MU* = 0, Ra, = 600, Q. = 1, Q, = 10, Pr, = 0.015, Pr2 = 1, d = 0.1 and B = 4. 
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